VideolCL: Confidence-based Iterative In-context Learning for Out-of-Distribution Video Understanding

Kangsan Kim^{1*}, Geon Park^{1*}, Youngwan Lee^{1,3}, Woongyeong Yeo¹, Sung Ju Hwang^{1,2}

¹KAIST ²DeepAuto.ai ³ETRI (*Equal contribution.)

Motivation

Regular ICL

type of crime?

Context too long!

A key challenge with ICL in the video domain is that video tokens are significantly longer than image or text tokens, limiting the number of video examples in a single context.

Main Results

			Multiple Choice QA	Open-ended QA Sports- Pit-		Video Classification		Video Captioning		
			Animal			UCF- Drive		CapERA		
	n	k	Kingdom	QA	VQA	Crime	&Act	BLEU-4	METEOR	ROUGE-L
GPT-4o [46]	-	0	58.2	-	6.9	58.0	-	0.023	0.142	0.173
Gemini-1.5 Pro [45]	-	0	72.9	-	14.7	55.1	-	0.019	0.134	0.176
Otter-7B [27]	1	8	19.4	-	21.8	6.8	-	0.059	0.169	0.167
LLaVA-Video-7B	-	0	68.0	25.5	6.7	39.3	20.2	0.027	0.149	0.181
LoRA FT	-	0	70.2	-	40.5	51.9	-	0.227	0.271	0.181
MMICES [8]	1	2	69.3	43.0	46.4	50.7	51.3	0.160	0.245	0.178
SIMRANKONCE	1	2	69.3	41.8	54.0	50.7	52.0	0.160	0.245	0.178
RANDEXVOTE	4	8	69.6	21.5	11.5	36.6	19.9	0.116	0.189	0.153
SIMRANKVOTE	4	8	70.9	36.3	57.6	50.6	50.6	0.165	0.242	0.175
VIDEOICL (Ours)	4	8	72.3	47.6	61.3	53.3	53.4	0.170	0.252	0.178
Δ			+4.3	+22.1	+54.6	+14.0	+33.2	+0.143	+0.104	-0.003

VideoICL achieves state-of-the-art results on six diverse OOD video-language datasets, with an average improvement of 25.6%p and up to 54.6%p in QA and classification tasks, along with a gain of 0.143 BLEU-4 points in video captioning, significantly outperforming zero-shot and baseline methods.

We propose a confidence-based iterative in-context learning approach that effectively leverages multiple examples, addressing token length limitations of video LMMs.

Case Study

Classify the following video into one of the following categories: <14 crime categories>

Confidence: 0.44

Prediction: No

Confidence: 0.50

Wrong answer

but uncertain

Prediction: Yes

Confidence: 0.68

Vandalism Assault Prediction: Assault

Confidence: 0.62

Token probability outperforms other confidence estimation methods.

Analysis

	Animal	Pit-	UCF-	CapERA		
	Kingdom	VQA	Crime	BLEU-4	METEOR	
Baseline	68.0	6.7	39.3	0.027	0.149	
k=2	69.3	54.0	50.7	0.160	0.245	
k = 4	71.0	59.5	52.7	0.168	0.251	
k = 8	72.3	61.3	53.3	0.170	0.253	
Δ	+4.3	+54.6	+14.0	+0.143	+0.104	
k = 16	73.2	61.2	53.6	0.169	0.250	
Δ	+5.2	+54.5	+14.3	+0.142	+0.101	

Using more examples lead to better results.

	Animal Kingdom	PitVQA	UCF-Crime
Baseline	68.0	6.7	39.3
Random	68.4 (+0.4)	8.3 (+1.6)	38.4 (-0.9)
Text only	-	33.1 (+24.8)	-
Video only	-	29.1 (+22.4)	-
Text + Video	72.3 (+4.3)	61.3 (+54.6)	53.3 (+14.0)

Both textual and visual features impact similarity-based selection.

Most confident examples emerge after first round.

	Animal			CapERA		
	Kingdom			BLEU-4	METEOR	
/erbalization	69.7	54.6	51.8	0.160	0.245	
Trained Probe	71.7	42.5	52.7	0.162	0.250	
Token Prob.	72.3	61.3	53.3	0.170	0.253	